Summary: PMI Laboratory Experiments (session 5)

- 5.1 D. Ruzic FLiRE
 - new "ramp hollow cathode" plasma source increased He⁺ current density $\approx 20x$
 - working to clean up Li, increase Li flow rate, lower T, then measure again He retention in Li(l)
- 5.2 M. Coventry IIAX
 - new sample holder for high-temp Sn sputtering measurements up to 800 °C
 - increasing projectile mass increases S_{y} , but lessens its dependence on T
- 5.3 T. Gray ESP-gun
 - increased energy deposition 2x to $\approx 1 \text{ J/cm}^2$ -pulse
 - working to achieve higher discharge energy, reduce noise, and measure heat flux
- 5.4 D. Whyte DIONISOS
 - first PMI study: 100 eV D ($10^{17} \text{ /cm}^2\text{-s}$) retention in Mo
 - .05% retention linearly increases with fluence, dynamic inventory 2x long term
- 5.5 M. Baldwin PISCES-B
 - Be-seeded plasma deposition on W results in surface alloying
 - Be-W alloys form at lower substrate temps than phase diagram would indicate
- 5.6 D. Nishijima PISCES-B
 - small beryllium concentration in plasma can suppress carbon chemical erosion
 - developed scaling law, which suggests protective Be layers can be formed between ELMs
- 5.7 E. Hollmann UCSD
 - H_2^+ and H_3^+ formation readily occurs in cool, dense plasmas
 - molecular ion formation/excitation is a heat loss mechanism if $T_e < 4 \text{ eV}$